Многоцелевое расширение почты Интернет

         

Мультипротокольная коммутация меток (протокол MPLS)


Основы протокола MPLS описаны в официальных документах RFC [3-9 и 14]. Существуют публикации и на русском языке [11-13]. Имеются три монографии, посвященных рассматриваемой проблематике [17-19].

Протокол MPLS хорошо приспособлен для формирования виртуальных сетей (VPN) повышенного быстродействия (метки коммутируются быстрее, чем маршрутизируются пакеты). Принципиальной основой MPLS являются IP-туннели. Для его работы нужна поддержка протокола маршрутизации MP-BGP (RFC-2858 [23]). Протокол MPLS может работать практически для любого маршрутизируемого транспортного протокола (не только IP). После того как сеть сконфигурирована (для этого используются специальные, поставляемые производителем скрипты), сеть существует, даже если в данный момент через нее не осуществляется ни одна сессия. При появлении пакета в виртуальной сети ему присваивается метка, которая не позволяет ему покинуть пределы данной виртуальной сети. Никаких других ограничений протокол MPLS не накладывает. Протокол MPLS предоставляет возможность обеспечения значения QoS, гарантирующего более высокую безопасность. Не следует переоценивать уровня безопасности, гарантируемого MPLS, атаки типа “человек посередине” могут быть достаточно разрушительны. При этом для одного и того же набора узлов можно сформировать несколько разных виртуальных сетей (используя разные метки), например, для разных видов QoS. Но можно использовать возможности АТМ (процедура setup), если именно этот протокол применен в опорной сети (возможные перегрузки коммутаторов не в счет).

Для обеспечения структурирования потоков в пакете создается стек меток, каждая из которых имеет свою зону действия. Формат стека меток представлен на рис. 3 (смотри RFC-3032). В норме стек меток размещается между заголовками сетевого и канального уровней (соответственно L2 и L3). Каждая запись в стеке занимает 4 октета.

Рис. 3. Формат стека меток

Рис. 3а. Размещение меток в стеке

Место заголовка МАС может занимать заголовок РРР. В случае работы с сетями АТМ метка может занимать поля VPI и VCI. Смотри рис 4. Глубина стека в данном случае не может превышать 1.


Рис. 4. Формат меток в ячейках АТМ

На рисунке полю СoS соответствует субполю приоритет поля ToS. Поле CoS имеет три бита, что достаточно для поля приоритета IP-заголовка. 6-битовое поле кода дифференцированной услуги DSCP сюда записать нельзя. Можно попробовать разместить этот код в поле самой метки. S - флаг-указатель дна стека меток; TTL - время жизни пакета MPLS.

Существующие версии программного обеспечения Cisco IOS (например, Cisco IOS Release 12.0) содержат набор средств управления трафиком. В частности, имеется возможность формировать статические маршруты и управлять динамическими маршрутами путем манипулирования значениями метрики. Иногда этого вполне достаточно, но в большинстве случаев провайдер нуждается в более эффективных средствах.

Межрегиональные каналы являются одной из основных расходных статей провайдеров. Управление трафиком позволяет IP-провайдеру предложить оптимальный уровень услуг своим клиентам с точки зрения полосы и задержки. Одновременно эта технология снижает издержки обслуживания сети.

MPLS представляет собой интеграцию технологий уровней L2 и L3. Управление трафиком в MPLS реализуется путем предоставления традиционных средств уровня L2 уровню L3. Таким образом, можно предложить в односвязной сети то, что достижимо только путем наложения уровня L3 на уровень L2.

Управление коммутацией по меткам основывается на базе данных LIB (Label Information Base). Пограничный маршрутизатор MPLS LER (Label Edge Router) удаляет метки из пакетов, когда пакет покидает облако MPLS, у вводит их во входящие пакеты. Схема работы с помеченными и обычными IP-пакетами показана на рис. 5.



Рис. 5. Обработка помеченных и обычных IP-пакетов

Управление трафиком MPLS автоматически устанавливает и поддерживает туннель через опорную сеть, используя возможности RSVP. Путь, используемый данным туннелем в любой момент времени определяется на основе ресурсных требований и сетевых возможностей, таких как полоса пропускания. В самом ближайшем будущем MPLS сможет решать проблему обеспечения требуемого уровня QoS и самостоятельно.

Информация об имеющихся ресурсах доводится до сведения заинтересованных субъектов с помощью протокола IPG (Interior Protocol Gateway), алгоритм которого базируется на состоянии канала.

Путь туннеля вычисляется, основываясь на сформулированных требованиях и имеющихся ресурсах (constraint-based routing). IGP автоматически маршрутизирует трафик через эти туннели. Обычно, пакет, проходящий через опорную сеть MPLS движется по одному туннелю от его входной точки к выходной.

Управление трафиком MPLS основано на следующих механизмах IOS:
  • Туннелях LSP (Label-switched path), которые формируются посредством RSVP, c расширениями системы управления трафиком. Туннели LSP представляют собой туннельные двунаправленные интерфейсы IOS c известным местом назначения.
  • Протоколах маршрутизации IGP, базирующиеся на состоянии канала (такие как IS-IS) с расширениями для глобальной рассылки ресурсной информации, и расширениях для автоматической маршрутизации трафика по LSP туннелям.
  • Модуле вычисления пути MPLS, который определяет пути для LSP туннелей.
  • Модуле управления трафиком MPLS, который обеспечивает доступ к и запись ресурсной информации, подлежащей рассылке.
  • Переадресации согласно меткам, которая предоставляет маршрутизаторам возможности, сходные с уровнем L2, перенаправлять трафик через большое число узлов согласно алгоритму маршрутизации отправителя.




Одним из подходов управления опорной сетью является определение сети туннелей между всеми участниками обменов. Протокол IGP, работающий в начале туннеля, определяет то, какой трафик должен проходить через любой оконечный узел. Модули вычисление пути и управления MPLS определяют маршрут LSP туннеля. Для каждого туннеля подсчитывается число пропущенных пакетов и байт.

Иногда, поток настолько велик, что его нельзя пропустить через один канал (туннель). В этом случае может быть создано несколько туннелей между отправителем и получателем.

Для реализации MPLS управления трафиком сеть должна поддерживать следующие возможности Cisco IOS:
  • Мультипротокольную переадресацию пакетов с использованием меток (MPLS)
  • IP-переадресацию CEF (Cisco Express Forwarding)
  • Протокол маршрутизации IS-IS (Intermediate System-to-Intermediate System; см. RFC-1142, -1195, -2763, -2966 и -2973)


Дополнительные данные о MPLS и управлении трафиком можно найти в документации Cisco (поддерживается в реализациях 7620, 7640, 7200, 7500 и 12000):
  • Cisco IOS Release 12.0 Switching Services Configuration Guide, глава "Tag Switching"
  • Cisco IOS Release 12.0 Switching Services Command Reference, глава "Tag Switching Commands".
  • Cisco IOS Release 11.3 Switching Services Command Reference, Часть 1, глава "Configuring RSVP"
  • Cisco IOS Release 11.3 Network Protocols Command Reference, Часть 1, глава "RSVP Commands".
  • Cisco IOS Release 12.0 Switching Services Configuration Guide, глава "Tag Switching".
  • Cisco IOS Release 12.0 Switching Services Command Reference, глава "Tag Switching Commands".


Протоколы состояния канала типа IS-IS для вычисления кратчайшего пути для всех узлов сети используют алгоритм Дикстры SPF. Маршрутные таблицы получаются на основе дерева кратчайших путей. Эти таблицы содержат упорядоченный набор адресов места назначения и информацию о ближайших соседей. Если маршрутизатор осуществляет прокладку путей на основе алгоритма шаг-за-шагом, первым шагом является физический интерфейс, соединенный с маршрутизатором.

Новые алгоритмы управления трафиком вычисляют пути до одного или более узлов в сети. Эти маршруты рассматриваются как логические интерфейсы исходного маршрутизатора. В данном контексте эти маршруты представляют собой LSP и рассматриваются как TE-туннели.

Эти TE-туннели являются реальными маршрутами, контролируемыми маршрутизаторами, которые размещены в начале этих туннелей. В отсутствии ошибок TE-туннели гарантируют отсутствие петель, но маршрутизаторы должны согласовать использование TE-туннелей. Иначе могут стать возможными зацикливания двух или более таких туннелей. Вероятность возникновения такой ситуации незначительна, так как трасса туннеля определяется отправителем.

Управление трафиком MPLS:
  • Исключается необходимость ручной конфигурации сетевых устройств, чтобы задать определенные маршруты. Вместо этого, можно положиться на возможности управления трафиком, предоставляемые MPLS.
  • Производится оценка полосы канала и значения трафика при прокладке маршрута через опорную сеть.
  • Имеет механизмы динамической адаптации, которые позволяют сделать опорную сеть устойчивой к отказам даже в условиях, когда несколько путей были рассчитаны в режиме off-line. В случае отказа узлов производится коррекция топологии опорной сети.


В рекомендациях CISCO [15] можно прочесть, что MPLS позволяет провайдеру маршрутизировать потоки данных так, чтобы клиенту гарантировать минимум задержки и максимум пропускной способности.

Сформировав несколько виртуальных сетей для заданного набора узлов, можно попытаться объединять возможности этих сетей в случае возникновения такой необходимости, увеличивая пропускную способность. Можно для каждой из субсетей использовать разный уровень QoS с помощью протокола RSVP.

Рассмотрение описания конфигурации MPLS в аппаратах CISCO [15] показывает отсутствие возможности задания какого-либо значения QoS. Но это не означает, что этого не будет возможно уже в 2003 году.


Содержание раздела